Keysight Technologies Выполнение широкополосных измерений

Рекомендации по применению

Введение

В процессе проектирования или обслуживания средств цифровой связи или радиолокации часто требуется демодуляция и анализ широкополосных сигналов СВЧ диапазона. В некоторых таких задачах, которые могут быть решены с помощью современного широкополосного осциллографа, например осциллографа Keysight cepuu Infiniium, сигнал можно оцифровывать непосредственно для его анализа с помощью ПО Keysight 89600 VSA. Однако во многих случаях предпочтительнее использовать широкополосный понижающий преобразователь частоты или тюнер для преобразования СВЧ сигнала на промежуточную частоту (ПЧ) перед его оцифровкой осциллографом.

В данном документе рассказывается о возможности применения анализатора сигналов Keysight серии РХА в качестве понижающего преобразователя для осциллографа Keysight Infiniium или дигитайзера Acqiris, на которых работает ПО 89600 VSA. При этом можно не только использовать преимущества полнофункционального анализатора сигналов/спектра и векторного анализатора сигналов, но и получить широкополосную систему, выполняющую демодуляцию в широкой полосе частот.

Также рассматриваются вопросы соединения приборов в измерительной системе, требуемые опции для анализатора РХА и методы коррекции его АЧХ в широком диапазоне частот.

Конфигурация анализатора РХА

Диапазон частот

Сначала рассмотрим требования, предъявляемые к диапазону частот и полосе пропускания при выполнении измерений в широкой полосе частот. Диапазон частот анализатора сигналов N9030A серии РХА определяется специальной опцией. В следующей таблице указаны опции с соответствующей верхней границей диапазона частот.

Модель-опция	Максимальная частота, ГГц
N9030A-503	3,6 ГГц
N9030A-508	8,4 ГГц
N9030A-513	13,6 ГГц
N9030A-526	26,5 ГГц
N9030A-543	43 ГГц
N9030A-544	44 ГГц
N9030A-550	50 ГГц

Табл. 1. Опции для анализатора РХА

Рассмотрим нижнюю границу диапазона. Минимальная частота для анализатора РХА равна 3 Гц. Диапазон, лежащий между минимальной и максимальной частотами, разделен на нижний и верхний диапазоны. Нижний диапазон занимает от 3 Гц до 3,6 ГГц. В этом диапазоне анализатор РХА имеет полосу ПЧ 160 МГц. В большинстве случаев для векторного анализа сигналов в нижнем диапазоне рекомендуется использовать внутреннюю цифровую ПЧ с полосой 160 МГц (опция В1Х) анализатора РХА. Однако, можно использовать внешний дигитайзер, например осциллограф Infiniium.

Верхний диапазон занимает от 3,6 ГГц до максимальной частоты, определяемой опциями (табл. 1). В этом диапазоне анализатор РХА поддерживает полосу ПЧ порядка нескольких сотен МГц. В документе основное внимание уделено обсуждению измерений в верхнем диапазоне. Рассматриваются лишь анализаторы РХА с опциями 508, 513, 526, 543, 544 или 550, поскольку из-за ограниченной полосы ПЧ заметных преимуществ работы только в нижнем диапазоне нет.

Выход ПЧ

При использовании анализатора РХА в качестве понижающего преобразователя, второй выход ПЧ на задней панели анализатора должен быть соединен с входом осциллографа. Чтобы этот выход работал, анализатор РХА необходимо оснастить опцией СR3. В табл. 3 приведены характеристики этой опции.

Параметр	Значение
Второй выход ПЧ	
Центральная частота	
Режим анализатора спектра (SA)	322,5 МГц
Режим анализатора I/Q	
Полоса ПЧ ≤ 25 МГц	322,5 МГц
Полоса ПЧ 40 МГц	250 МГц
Полоса ПЧ 160 МГц	300 МГц
Коэффициент передачи преобразователя на центральной частоте на втором выходе ПЧ	от -1 до +4 дБ (ном.) плюс АЧХ в области ВЧ¹
Полоса пропускания	
Нижний диапазон	До 160 МГц (ном.)
Верхний диапазон	
С преселектором	Зависит от центральной частоты в диапазоне ВЧ ²
Без преселектора (опция МРВ)	До 900 МГц (ном.)
Остаточные выходные сигналы	-94 дБм или меньше (ном.)

Табл. 2. Второй выход ПЧ

Особое значение имеют два параметра: центральная частота на выходе ПЧ и заданная полоса ПЧ. Центральная частота лежит в диапазоне от 250 до 322,5 МГц. При использовании анализатора РХА в качестве понижающего преобразователя частоты рекомендуется устанавливать его в режим анализа спектра со свипированием, в котором выдается обычная ПЧ 322,5 МГц. Рекомендуется также устанавливать нулевую полосу обзора, при которой свипирование гетеродина не выполняется и приемник работает на частоте, выбранной в меню центральной частоты.

¹ Коэффициент передачи преобразователя определяется при ослаблении механического аттенюатора 0 дБ и выключенном электронном аттенюаторе. Номинальное значение соответствует нулевой полосе обзора.

² Полоса пропускания ЖИГ-преселектора, которая обычно изменяется от 46 до 74 МГц, зависит от центральной частоты и выбранной максимальной частоты анализатора. Ширина полосы пропускания зависит главным образом от преселектора.

Второй параметр из табл. 2, который необходимо рассмотреть, – заданная полоса ПЧ. При работе в верхнем диапазоне полоса ПЧ задается в соответствии с включением или отключением преселектора. В данной задаче преселектор не используется, что позволяет получить максимально возможную полосу ПЧ. Преселектор представляет собой перестраиваемый полосовой фильтр, включенный перед первым смесителем, когда анализатор работает в верхнем диапазоне. Фильтр значительно повышает эффективность анализа спектра в режиме свипирования, но сильно ограничивает полосу пропускания при использовании анализатора в качестве понижающего преобразователя. При отключении преселектора защита от помех по зеркальному каналу отсутствует, поэтому необходимо предотвратить подачу на вход прибора сигналов в полосе зеркального канала, которые могут быть преобразованы в ПЧ. Для этого на входе анализатора могут потребоваться фильтры.

Таким образом, чтобы получить оптимальный широкополосный понижающий преобразователь частоты, в анализаторе РХА необходимо использовать опцию MPB (исключение преселектора).

Выводы по конфигурированию

Учитывая вышеизложенное и предполагая покрытие диапазона частот от 3,6 до 26,5 ГГц, можно рекомендовать следующую минимальную конфигурацию:

Модель/опция	Описание
N9030A	Анализатор РХА серии Х
Опция 526	Максимальная частота диапазона 26,5 ГГц
Опция CR3	Второй выход ПЧ на задней панели
Опция МРВ	Обход преселектора

Табл. 3. Рекомендованная конфигурация анализатора РХА

В таблице 3 представлена минимальная конфигурация анализатора сигналов, который может также использоваться в качестве широкополосного понижающего преобразователя. Для специальных задач анализа могут потребоваться дополнительные опции, например, предусилитель для работы со слабыми сигналами.

Рекомендации по выбору полосы пропускания

Рассмотрим особенности выбора полосы пропускания. Прежде всего, надо определить, какая полоса пропускания необходима для конкретного измерения и какую максимальную полосу пропускания может обеспечивать анализатор. Полоса пропускания анализатора, которая при работе в верхнем диапазоне без преселектора может достигать 1 ГГц, зависит от требований к точности анализа сигналов. Равномерность ПЧ оптимизирована в полосе пропускания от 600 до 900 МГц. При полосе пропускания 1 ГГц, центральная частота на выходе ПЧ равна 322,5 МГц, а частота гетеродина выше частоты СВЧ сигнала, для которого должно быть выполнено понижающее преобразование. При половине полосы ПЧ, равной 500 МГц, нижняя частота полосы ПЧ равна -177,5 МГц, что приводит к свертыванию спектра ПЧ.

Рекомендуется, чтобы максимальная ширина полосы ПЧ для стандартной конфигурации с центральной частотой 322,5 МГц не превышала 500 МГц. Это ограничение позволяет обеспечить защитный интервал 72,5 МГц между частотой гетеродина и требуемой полосой измерения.

Если требуется увеличить полосу пропускания, то можно выполнить простую настройку анализатора РХА для сдвига вверх центральной частоты ПЧ, в результате чего защитный интервал между частотой гетеродина и полосой измерения увеличится. Настройка выполняется посредством установки отстройки частоты анализатора.

Какая полоса пропускания может быть получена таким методом? Мы рекомендуем использовать полосу ПЧ порядка 900 МГц с центральной частотой 700 МГц. Для получения этих значений можно использовать отстройку частоты -377,5 МГц. Требуемая отстройка частоты вычисляется по формуле:

$$F_{omcmpoйкu} = F_{HOM. \Pi Y} - F_{mpeo. \Pi Y}$$

Для приведенного выше примера эта отстройка будет равна:

В следующем примере предположим, что полоса ПЧ равна 900 МГц, а центральная ПЧ – 700 МГц.

Настройка анализатора РХА

При использовании анализатора РХА в качестве понижающего преобразователя с центральной частотой на выходе ПЧ 700 МГц и полосой ПЧ до 900 МГц, настройку анализатора необходимо выполнять следующим образом:

Примечание. При описании настройки анализатора и далее, команда, напечатанная жирным шрифтом и помещенная в скобки, относится к аппаратной кнопке, а команда без скобок – к программной кнопке.

- Убедиться, что прибор работает в режиме анализатора спектра, нажав кнопку [Mode] и проверив, что надпись Spectrum Analyzer выделена.
- Нажать зеленую кнопку [Mode Preset] в верхнем правом углу на передней панели прибора. После этого прибор сможет выполнять свипирование во всей полосе от 10 МГц до максимальной частоты (зависит от опции).
- Настроить анализатор на требуемую центральную частоту, нажав кнопку [FREQ] > Center Freq. В данном случае эта частота равна 10,0 ГГц.
- 4. Установить нулевую полосу обзора, нажав кнопку [SPAN] > Zero Span.
- Задать отстройку частоты, как указано выше, нажав кнопку [FREQ] > Freq Offset и введя требуемое значение отстройки. Например, ввести -377,5 МГц. Это приведет к отстройке центральной частоты на введенное значение.
- Повторно установить требуемую центральную частоту, повторив шаг 3. В данном примере используется частота 10 ГГц.
- Для настройки конфигурации выхода ПЧ нажать кнопку [Input / Output] > More > Output Config > Aux IF Out > Second IF (322,5 МГц).
- Отключить преселектор, нажав кнопку [AMPTD] > More > uW Path Ctrl > uW Preselector Bypass.
- Выключить функции автоматической коррекции анализатора, нажав кнопку[System] > Alignments > Auto Align > Off. После этого прибор не будет выполнять автоматическую коррекцию в процессе измерения.
- 10. В завершение установить прибор в режим однократного свипирования, нажав кнопку [Single]. Это позволит предотвратить любые внутренние калибровки между свипированиями, которые могут повлиять на результаты измерений. В режиме однократного свипирования обновление параметров, например изменения частоты, не выполняется до завершения свипирования. Поэтому не забывайте нажимать кнопку [Single] после любого изменения конфигурации.

После последовательного выполнения всех операций настройки анализатор будет сконфигурирован как понижающий преобразователь частоты и настроен на преобразование сигнала 10 ГГц в ПЧ с центральной частотой 700 МГц. Выходной сигнал ПЧ необходимо проверить, подсоединив к выходу ПЧ другой анализатор спектра или используя ПО VSA для измерения параметров сигнала. Учтите, что частота гетеродина выше полосы измерения, поэтому спектр ПЧ будет инвертирован (низкие и высокие частоты поменяются местами).

Примечание. Если требуемая полоса пропускания не выше 500 МГц, то рекомендуется использовать стандартную центральную частоту на выходе ПЧ, равную 322,5 МГц. В этом случае шаги 5 и 6 последовательности настройки не выполняются.

Настройка ПО 89600 VSA

Подсоединить выход ПЧ на задней панели анализатора РХА к входу Channel 1 используемого осциллографа Infiniium. Осциллограф должен поддерживать полосу пропускания 2 ГГц. Запустить ПО 89600 VSA. После инициализации ПО и отображения результата свипирования, перейти к следующим шагам последовательности настройки:

 Включить генератор сигналов и соединить его с входом анализатора РХА. Установить генератор в режим подачи немодулированного сигнала с амплитудой 0 дБм. Центральная частота должна совпадать с частотой, использованной при настройке анализатора (в нашем случае 10 ГГц). Рекомендуется использовать сигнал с той же амплитудой, что и тестируемый сигнал. Это позволит увеличить динамический диапазон, так как АЧХ будет измеряться при уровне мощности измеряемого сигнала.

Примечание. Это может оказаться полезным для оценки ослабления, установленного в анализаторе РХА. Для входного сигнала с уровнем 0 дБм минимальное ослабление на входе должно быть от 10 до 16 дБ. Точка компрессии на 1 дБ для анализатора РХА лежит в диапазоне от -3 до +4 дБм (по входу смесителя). Для устранения проблем компрессии усиления рекомендуется обеспечивать ослабление входного сигнала на 10 дБ.

- На дисплее отображения спектра ПО VSA должна появиться немодулированная несущая с частотой 700 МГц (или любая заданная ПЧ). Отсутствие такого сигнала указывает на неправильную настройку.
- 3. Выбрать диапазон в ПО VSA 0 дБ.
- Сконфигурировать ПО 89601В VSA для использования с внешним понижающим преобразователем, выбрав Input menu > User Correction > Frequency Converter. Если вы используете ПО 89601A VSA, то следует выбрать Utilities Menu > Calibration. Выбрать вкладку Frequency (Частота) в окне Calibration Properties (Свойства калибровки) и сконфигурировать меню понижающего преобразователя, выбрав Use Frequency Converter.
- 5. Ввести центральную частоту. В данном примере эта частота равна 10 ГГц.
- Ввести промежуточную частоту (ПЧ). В нашем случае эта частота равна 700 МГц.
- 7. Ввести полосу пропускания. В данном примере эта полоса равна 900 МГц.
- В заключение выбрать Inverted под Spectrum. Если вы используете ПО 89601A VSA, то следует выбрать Mirror Frequency. Это приведет к инверсии спектра и, следовательно, позволит решить проблему инверсии спектра, о которой сказано выше.

Настройка ПО 89600 VSA (продолжение)

Окно Correction properties (Свойства коррекции) представлено ниже.

User Correction F	ixed Equalization		
Define correction for: Amplifier/Attenuato Gain: 1 V/V Delay: 0 s DC Offset: 0 V	RE Calibration File	 Frequency Converter RF Center Frequency: 10 GHz IF Center Frequency: 700 MHz IF Bandwidth: 900 MHz Spectrum: Inverted 	IF Filter (F Calibration File;
Corrected Measurement Plane		$-\bigotimes$	Analyzer HW

Рис. 1. Свойства коррекции в ПО VSA

Если ПО VSA сконфигурировано для использования с внешним понижающим преобразователем, то немодулированный сигнал с частотой 10 ГГц должен появиться в центре окна, в котором отображается спектр. Отображенная полоса обзора может быть установлена неправильно. В этом случае рекомендуется установить полосу обзора в соответствии с введенной полосой пропускания, как показано в меню Frequency (Частота) в окне Calibration Properties (Свойства калибровки) на рис. 1.

Если все сконфигурировано правильно, то экран VSA должен выглядеть следующим образом:

Рис. 2. Экран VSA – спектр несущей с частотой 10 ГГц

Коррекция АЧХ понижающего преобразователя

Если анализатор РХА сконфигурирован как понижающий преобразователь и на экране ПО VSA правильно отображается спектр немодулированного сигнала, то можно начать коррекцию АЧХ системы, состоящей из понижающего преобразователя, кабелей и осциллографа. Для этого необходимо измерить АЧХ системы, используя источник свипирующего ВЧ сигнала и запоминая данные АЧХ, чтобы затем использовать эти данные в виде файла коррекции в ПО VSA.

Перед конфигурированием генератора сигналов для получения калибровочного сигнала, необходимо рассмотреть погрешность амплитуды сигнала этого генератора. Обычно при свипировании в широком диапазоне частот (от 800 МГц до 1 ГГц) возможна неравномерность амплитуды сигнала генератора в пределах 2 дБ. Отклонения амплитуды приводят к снижению точности предложенной калибровки. Если требуется более равномерная АЧХ, то можно использовать внешний контур АРУ. Для оценки возможностей регулировки необходимо изучить «Руководство пользователя генератора сигналов». Кроме того, с помощью анализатора спектра или измерителя мощности можно измерить характеристики генератора, чтобы определить его соответствие заданным требованиям.

На рис. 3 приведена типовая схема с внешним контуром АРУ, в котором используются направленный ответвитель и диодный детектор. При использовании резистивного делителя мощности вместо направленного ответвителя нужно учесть, что точность делителя с двумя резисторами выше, чем делителя с тремя резисторами.

Рис. 3. Типовая схема внешнего контура АРУ для генератора сигналов

При применении внешнего контура АРУ можно достичь неравномерности амплитуды менее 1 дБ, что зависит от качества используемых компонентов.

Коррекция АЧХ понижающего преобразователя (продолжение)

Для настройки измерений АЧХ необходимо выполнить следующие действия:

- Настроить генератор сигналов (Keysight PSG или MXG) для свипирования в необходимом диапазоне частот. В данном примере центральная частота равна 10 ГГц, а диапазон свипирования – 900 МГц. Установить начальную частоту генератора сигнала на 9,55 ГГц и конечную частоту – на 10,45 ГГц. Амплитуду следует установить на 0 дБм или близкой к амплитуде измеряемого сигнала.
- Установить достаточно большое время свипирования генератора, например, от 10 до 20 с.
- В процессе свипирования генератора сигналов на экране спектра в ПО VSA можно наблюдать перемещение тона в пределах полосы обзора. В данном примере диапазон свипирования составляет 900 МГц (рис. 2).
- 4. В верхнем правом углу окна отображения спектра может появиться символ OV (перенапряжение). Символ OV указывает на перегрузку VSA. При появлении этого символа необходимо увеличить амплитудный диапазон VSA с малым шагом до исчезновения символа. Для этого следует нажать кнопку range value (значение диапазона) в верхнем правом углу экрана отображения спектра, чтобы выделить значение диапазона. После этого диапазон можно изменить с помощью клавиш со стрелками «вверх» и «вниз». Если символ OV отсутствует, то необходимо уменьшить диапазон до появления символа, а затем немного увеличить до его исчезновения.
- Переключить режим усреднения в ПО VSA на непрерывную регистрацию пиковых значений. Для этого в меню MeasSetup следует выбрать пункт Average. В прокручивающемся меню типа усреднения выбрать Continuous Peak Hold.
- После выбора непрерывной регистрации пиковых значений на экране отображения спектра должна появиться АЧХ системы. Можно изменять чувствительность (дБ/дел) и настраивать параметры отображения для более удобного просмотра АЧХ.
- Выполнить несколько циклов свипирования с помощью генератора, чтобы выявить любые провалы, которые могут появиться на АЧХ. При удовлетворительной форме АЧХ необходимо переключить ПО VSA в режим паузы, нажав символ с двумя вертикальными линиями, расположенный под меню Edit (Редактирование).

Кривая АЧХ может выглядеть следующим образом:

Рис. 4. АЧХ понижающего преобразователя на экране ПО VSA (некорректированная)

- Сохранить измеренную АЧХ, выбрав File > Copy Trace. По умолчанию для сохранения предлагается Регистр D1. Рекомендуется использовать этот регистр.
- После записи измеренной АЧХ в регистр D1 ее можно использовать для коррекции с помощью VSA. Для этого необходимо выбрать Input > Fixed Equalization, после чего появится диалоговое окно VSA Correction Properties (Свойства коррекции VSA).
- Выбрать во вкладке Fixed Equalization диалогового окна Correction Properties пункт Fixed Equalization. Убедиться, что для хранения файла с данными коррекции выбран регистр D1. Закрыть диалоговое окно.
- Перезапустить ПО VSA (после переключения в режим паузы) и настроить масштаб для наиболее удобного отображения. На дисплее VSA теперь отобразится кривая скорректированной АЧХ (после пары циклов свипирования).

Теперь измерительная система скорректирована с учетом АЧХ понижающего преобразователя, но амплитуда еще не откалибрована. Для калибровки амплитуды потребуется ввести фиксированное смещение амплитуды в ПО VSA.

Рис. 5. АЧХ понижающего преобразователя (скорректированная)

Теперь ПО VSA можно использовать для анализа сигналов. Перед продолжением работы необходимо вернуться в меню MeasSetup Average и выключить функцию непрерывной регистрации пиковых значений.

Коррекция амплитуды

До этого момента выполнялась коррекция измерительной системы, компенсирующая неравномерность АЧХ понижающего преобразователя, всех соединительных кабелей и осциллографа, используемого для захвата сигнала, но не было коррекции отображаемого уровня для повышения точности измерений амплитуды сигнала. Каждый из перечисленных выше вкладов в погрешность АЧХ снижает точность измерения амплитуды, но главные факторы снижения точности – это потери преобразования и значение ослабления, выбираемое при настройке анализатора РХА.

В табл. 2 указано номинальное значение коэффициента передачи преобразователя от 1 до +4 дБ. При таком коэффициенте предполагается, что аттенюатор РХА установлен на 0 дБ. Для рассматриваемых уровней сигнала типовое ослабление лежит в диапазоне от 10 до 16 дБ. Следовательно, можно ожидать, что потери преобразования ВЧ в ПЧ составят 10 дБ.

Компенсация потерь сигнала выполняется достаточно просто и зависит от требуемого уровня точности. В простейшем случае на выходе генератора сигналов устанавливается немодулированный сигнал с амплитудой О дБм, который подается на ВЧ вход анализатора спектра, используемого в качестве понижающего преобразователя. После этого можно измерить уровень сигнала на экране отображения спектра ПО VSA, используя маркер. Измеренная мощность может быть инвертирована (умножена на -1) и использована в качестве коэффициента усиления/ослабления в меню User Correction (Коррекция пользователя) следующим образом:

- Ввести известный уровень мощности на центральной частоте полосы обзора VSA, в нашем случае – немодулированный тональный сигнал частотой 10 ГГц с амплитудой 0 дБм.
- Измерить мощность сигнала с использованием маркера на экране отображения спектра ПО VSA. Предположим, что амплитуда по маркеру равна -10 дБм.
- Вычислить требуемый коэффициент коррекции, как разность между мощностью входного сигнала и измеренной мощностью сигнала. А_с = P_{вх.} -P_{измер}. В нашем примере Ас = 0 дБм - (-10 дБм) = 10 дБ.
- 4. Перейти в меню Input ПО 89601В и выбрать User Correction > Define Correction for > Amplifier/Attenuator.
- 5. Ввести коэффициент коррекции, вычисленный на шаге 3.

Теперь ПО 89600 VSA должно отображать точные уровни мощности. Результат может быть улучшен посредством включения делителя мощности между выходом генератора сигналов и входом понижающего преобразователя, причем свободный выход делителя соединяется с измерителем мощности. При этом повышается точность измерения мощности на входе понижающего преобразователя. Аналогично делитель и датчик мощности можно подсоединять к концу соединительного кабеля, чтобы компенсировать потери на нем.

Измерения

На рис. 6 показан результат процедуры коррекции, описанной выше. Здесь ПО VSA используется для демодуляции радиолокационного ЛЧМ-сигнала с полосой 800 МГц. Четыре панели дисплея используются для представления информации о сигнале. На верхней левой панели отображается ВЧ спектр. Под спектром отображается зависимость мощности от времени, представляющая импульс длительностью 5 мкс с масштабом по вертикали 10 дБ/дел. На верхней правой панели показана зависимость фазы сигнала от времени, а под ней – зависимость частоты от времени. Зависимость частоты от времени показывает текущую частотную модуляцию импульса и может использоваться для определения нелинейности ЛЧМ-сигнала.

Рис. 6. Пример демодуляции радиолокационного ЛЧМ-сигнала частотой 750 МГц

В данном документе показано, как использовать анализатор РХА в качестве широкополосного понижающего преобразователя частоты вместе с ПО 89600 VSA для демодуляции и анализа радиолокационных и телекоммуникационных сигналов. Предложена процедура коррекции АЧХ понижающего преобразователя и соединительных кабелей или тестовых оснасток, применяемых в измерительной системе. Использование анализатора РХА в качестве понижающего преобразователя частоты позволит инженерам повысить эффективность контрольно-измерительного оборудования и не разрабатывать специальные понижающие преобразователи для измерений широкополосных сигналов. 15 | Keysight | Выполнение широкополосных измерений — Рекомендации по применению

Развиваемся с 1939 года

Уникальное сочетание наших приборов, программного обеспечения, услуг, знаний и опыта наших инженеров поможет вам воплотить в жизнь новые идеи. Мы открываем двери в мир технологий будущего. От Hewlett-Packard и Agilent к Keysight.

myKeysight

www.keysight.com/find/mykeysight

Персонализированная подборка только нужной вам информации.

http://www.keysight.com/find/emt_product_registration

Зарегистрировав свои приборы, вы получите доступ к информации о состоянии гарантии и уведомлениям о выходе новых публикаций по приборам.

услуги ЦСМ Keysight

myKeysight

www.keysight.com/find/service

Центр сервиса и метрологии Keysight готов предложить вам свою помощь на любой стадии эксплуатации средств измерений — от планирования и приобретения новых приборов до модернизации устаревшего оборудования. Широкий спектр услуг ЦСМ Keysight включает услуги по поверке и калибровке СИ, ремонту приборов и модернизации устаревшего оборудования, решения для управления парком приборов, консалтинг, обучение и многое другое, что поможет вам повысить качество ваших разработок и снизить затраты.

Планы технической поддержки Keysight www.keysight.com/find/AssurancePlans

ЦСМ Keysight предлагает разнообразные планы технической поддержки, которые гарантируют, что ваше оборудование будет работать в соответствии с заявленной производителем спецификацией, а вы будете уверены в точности своих измерений.

Торговые партнеры Keysight

www.keysight.com/find/channelpartners

Получите лучшее из двух миров: глубокие профессиональные знания в области измерений и широкий ассортимент решений компании Keysight в сочетании с удобствами, предоставляемыми торговыми партнерами.

www.keysight.com/find/PXA

Российское отделение Keysight Technologies

115054, Москва, Космодамианская наб., 52, стр. 3 Тел.: +7 (495) 7973954 8 800 500 9286 (Звонок по России бесплатный)

Факс: +7 (495) 7973902

e-mail: tmo_russia@keysight.com www.keysight.ru

Сервисный Центр

Keysight Technologies в России 115054, Москва, Космодамианская наб, 52, стр. 3 Тел.: +7 (495) 7973930 Факс: +7 (495) 7973901 e-mail: tmo_russia@keysight.com

(BP-16-10-14)

DEKRA Certified ISO 9001:2008

www.keysight.com/go/quality Keysight Technologies, Inc.

Сертифицировано DEKRA на соответствие стандарту ISO 9001:2015 Система управления качеством

Информация может быть изменена без уведомления. © Keysight Technologies, 2017 Published in USA, December 01, 2017 5990-9108RURU www.keysight.com

